

SIDDHARTH INSTITUTE OF ENGINEERING AND TECHNOLOGY:PUTTUR (AUTONOMOUS) OUESTION BANK (DESCRIPTIVE)

Subject with Code: FLAT(20CS0512) Course & Branch: B.Tech - CSE

Year &Sem: II-B.Tech & II-Sem Regulation: R20

<u>UNIT -I</u> INTRODUCTION

1 a Define relations on sets and explain its properties with an example. [L1][CO1] [6M]
b Differences between DFA and NFA with examples. [L4][CO1] [6M]

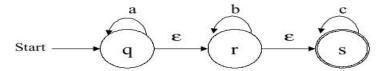
2 a Consider the below finite automata and check whether the strings are [L1][CO1] [8M] accepted or not

States	Input Alphabtes		
(Q)	0	1	
->q0	q1	q3	
q1	q0	q2	
(q2)	q3	q1	
q3	q2	q0	

(i) 0001 (ii) 1010 (iii) 1001 (iv) 0101

b Compare DFA and NFA [L2][CO1] [4M]

3 a Define Melay machine and Moore machine. [L3][CO1] [4M]


b Define alphabets, strings, Languages? [L3][CO1] [4M]

c Design DFA which accepts even number of 0's and odd number of 1's [L6][CO2] [4M] over {0, 1}.

4 a Analyze and explain with example Chomsky Hierarchy. [L4][CO1] [4M]

b Convert the following NFA with ε moves to DFA. [L6][CO2] [8M]

Convert the following NFA with ε moves to NFA without ε moves by ε - [L3][CO2] [12M] closure method.

6 a Construct DFA for the given NFA

[L6][CO2] [6M]

	Nex	Next state			
	0	1			
\rightarrow q0	q0,q1	q0			
q1	q2	q1			
q2	q3	q 3			
(q3)	-	q2			

b State what is meant by finite automata and discuss the Applications and Limitations FA.

[L3][CO1] [6M]

7 a Contrast Mealy machine and Moore machine.

[L4][CO1] [4M]

b Convert the following Mealy machine into its equivalent Moore machine.

[L3][CO2] [6M]

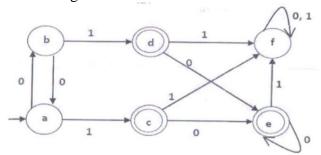
Present	I/P=0		I/P=1	
State	Next State	O/P	Next State	O/P
\rightarrow A	С	0	В	0
В	A	1	D	0
С	В	1	A	1
D	D	1	С	0

c Construct Mealy machine corresponding to Moore machine?

[L3][CO2] [2M]

States	Next	Output		
(Q)	I/P=0 I/P=1		Output	
-> q1	q1	q2	0	
q2	q1	q3	0	
q3	q1	q3	1	

8 a Describe Finite Automata with Output.

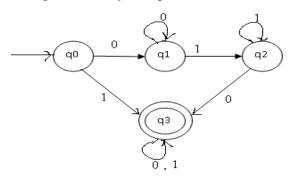

[L2][CO1] [6M]

b Write why minimization of finite automata is required and explain the procedure adapted for minimization of finite automata.

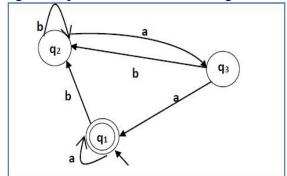
[L6][CO1] [6M]

9 Minimize the following automata

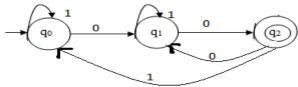
[L3][CO2] [12M]

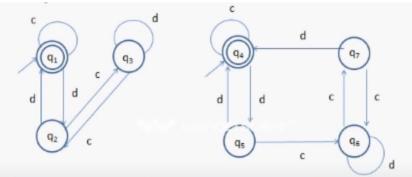


Write down procedure for minimizing automata using Myhill- Nerode [L3][CO2] [12M] theorem with a given example. ('*' means final states)


	Next State		
Present State	I/P=a	I/P=b	
\longrightarrow A	В	F	
В	A	F	
С	G	A	
D	Н	В	
Е	A	G	
*F	Н	С	
*G	A	D	
*H	A	С	

<u>UNIT -II</u> REGULAR LANGUAGES


- 1 a List out the identities of Regular expression. [L1][CO3] [6M]
 b From the identities of RE, prove that [L3][CO3] [6M]
 - i) 10+(1010)*[^+(1010)*]=10+(1010)*
 - ii) (1+100*)+(1+100*)(0+10*)(0+10*)*=10*(0+10*)*
- 2 a Prove R=Q+RP has unique solution, R=QP* [L3][CO3] [4M]
 - b Construct RE from given FA by using Arden's Theorem. [L6][CO3] [8M]


3 a Construct the regular expression for the following FA. [L6][CO3] [6M]

- b Construct an equivalent FA for the given regular expression [L3][CO2] [6M] (0+1)*(00+11)(0+1)*
- Explain about Arden's theorem, for constructing the RE from a FA with [L6][CO3] [12M] an example.

- 5 a Construct an equivalent FA for the given regular expression [L6][CO2] [6M] 10 + (0 + 11) 0*1
 - b Write the process of equivalence two FA's? Compare the equivalence [L4][CO3] [6M] two FA's or not.

- 6 a Define Regular expressions. List its Applications.
 - b Compare and Prove that the following regular expressions are equivalent.

[L1][CO3] [4M]

[L4][CO3] [8M]

7	a	L1 = $1*(011)*(1*(011)*)*$ L2 = $(1+011)*$ Convert the given RG to FA	[L3][CO2]	[6M]
		$S \rightarrow aA/bB/a/b$ $A \rightarrow aS/bB/b$ $B \rightarrow aA/bS$		
	b	Construct a regular grammar for the given regular expression $ab(a+b)^*$	[L6][CO1]	[6M]
8	a	State Pumping lemma for regular languages.	[L1][CO3]	[4M]
	b	Prove that $L = \{a^i b^i \mid i \ge 0\}$ is not regular	[L3][CO3]	[8M]
9	a	Prove that the language $L=\{a^nb^n\mid n>=1\}$ is not regular using pumping lemma.	[L3][CO3]	[8M]
	b	What are the applications of Pumping Lemma?	[L1][CO3]	[4M]
10	a b	Give the Closure properties of Regular Sets Explain how equivalence between two FA is verified with example.	[L1][CO2] [L2][CO2]	[6M] [6M]
		- · · · · · · · · · · · · · · · · · · ·		

<u>UNIT -III</u> CONTEXT FREE GRAMMAR

1	a b	State what is meant by derivation and parse tree with examples. Construct Leftmost and Rightmost derivation and derivation tree for the string 0100110 S $\rightarrow 0S/1AA$ A $\rightarrow 0/1A/0B$ B $\rightarrow 1/0BB$	[L1][CO4] [L6][CO4]	[4M] [8M]
2	a b	Define Ambiguous grammar with an examples. Remove Left recursion from the grammar S→Sab/T T→Tcd/F F→Fa/G	[L1][CO4] [L3][CO4]	[4M] [8M]
3	a	Explain Left recursion and Left factoring.	[L2][CO4]	[6M]
	b	Perform left factor for the grammar A→abB/aB/cdg/cdeB/cdfB	[L3][CO4]	[6M]
4	a	Describe what is meant by Simplifying the Grammar.	[L2][CO4]	[4M]
	b	Evaluate simplification of the grammar for the following context free grammar. $S \rightarrow Aa / B$ $B \rightarrow a/bC$ $C \rightarrow a / \epsilon$	[L5][CO4]	[8M]
5	a	Write the process adapted to convert the grammar into CNF?	[L2][CO4]	[4M]
	b	Convert the following grammar into CNF. S→ bA/aB A→bAA/aS/a B→aBB/bS/a.	[L3][CO4]	[8M]
6	a	Define Greibach Normal Form.	[L1][CO4]	[2M]
	b	Convert the following grammar into Greibach Normal Form. S→AA/a A→SS/b	[L3][CO4]	[10 M]
7	a	Define the following terms: i) Useless symbol ii) Null production	[L1][CO4]	[8M]
8	b	iii) Unit productions List the closure properties of CFLs Interpret and explain simplification of the grammar. Simplify the following CFG	[L1][CO4] [L5][CO4]	[4M] [12M]
		$S \rightarrow aSb S \rightarrow A A \rightarrow cAd A \rightarrow cd$		
9	a	Remove the unit production from the grammar $S \rightarrow AB A \rightarrow E B \rightarrow C C \rightarrow D D \rightarrow b E \rightarrow a$	[L3][CO4]	[6M]
	b	Remove ϵ productons from the grammar $S \rightarrow ABaC A \rightarrow BC B \rightarrow b/\epsilon C \rightarrow D/\epsilon D \rightarrow d$	[L3][CO4]	[6M]
10	a	State Pumping lemma for Context-free language	[L1][CO4]	[4M]
	b	Show that $L = \{a^nb^nc^n \text{ , where } n>=1\}$ is not context free.	[L3][CO4]	[8M]

<u>UNIT –IV</u> <u>PUSH DOWN AUTOMATA</u>

1	a	State the formal of PDA.	[L1][CO5]	[4M]
	b	Construct a PDA which recognizes all strings that contain equal number of 0's and 1's.	[L6][CO5]	[8M]
2	a	Describe Instantaneous description (ID) in PDA.	[L2][CO5]	[6M]
	b	Define push down automata? Explain acceptance of PDA with final	[L2][CO5]	[6M]
		state.		
3	a	Explain about the graphical notation of PDA.	[L5][CO5]	[6M]
	b	Explain acceptance of PDA with empty stack.	[L5][CO5]	[6M]
4	a	Construct an equivalent PDA for the following CFG.	[L6][CO5]	[6M]
		S→aAB bBA		
		A→bS a		
	1.	B→aS b.	[] (][(0.5]	[/] / []
_	b	Describe acceptance of PDA.	[L6][CO5]	[6M]
5		Construct a PDA to accept the language $L = \{a^n b^{2n}, n >= 1\}$ by empty	[L6][CO5]	[12M]
		stack and final state.	H (HCO/1	[(, () <u>()</u>
6		Construct PDA from the following Grammar.	[L6][CO5]	[6+6M]
		(i) $S \rightarrow aB$ $B \rightarrow bA/b$ $A \rightarrow aB$ (ii) $S \rightarrow 0BB$ $B \rightarrow 0S /1S/0$		
7		Design a DPDA to accept the language $L=\{WCW^R / W \in (a,b)^+\}$ by	[L6][CO5]	[12M]
		empty stack and final state.		
8		Write the process adapted and convert the given PDA into an equivalent CFG.	[L3][CO5]	[12M]
		$\delta(q_0,a_0,z_0) \rightarrow (q_1,z_1z_0)$		
		$\delta(q_0,b,z_0) \rightarrow (q_1,z_2z_0)$		
		$\delta(q_1,a,z_1) \rightarrow (q_1, z_1z_1)$		
		$\delta(q_1,b,z_1) \rightarrow (q_1,\lambda)$		
		$\delta(q_1,b,z_2) \rightarrow (q_1,z_2z_2)$		
		$\delta(q_1, a, z_2) \rightarrow (q_1, \lambda)$ $\delta(q_1, \lambda, z_2) \rightarrow (q_1, \lambda) // \text{ accepted by the empty stack.}$		
9		Construct a PDA that recognizes balanced parentheses.	[L6][CO5]	[12M]
10	a	State NPDA.	[L1][CO5]	[2M]
-0	b	Construct a NPDA to accept the language $L=\{WW^R / W \in (a,b)^*\}$ by		[10M]
	_	empty stack and final state.	[][]	[]

<u>UNIT -V</u> TURING MACHINES AND UNDECIDABILITY

1	a	State Turing machine.				[L1][CO6]	[2M]
	b	Construct a Turing machine that recognizes the language $L=\{a^n b^n, n>1\}$. Show an ID for the string 'aaabbb' with tape symbols.				[L6][CO6]	[10M]
2	a	Explain about the graphical notation of TM.				[L3][CO6]	[6M]
3	b	Describe Instantaneous Description of Turing Machine. Construct a Turing machine which multiplies two unary numbers.				[L2][CO6] [L6][CO6]	[6M] [12M]
4		Design a Turing Machin Draw the transition diag	-	-	ne over $\{0,1\}^*$.	[L6][CO6]	[12M]
5	a	Explain the procedure a	dapted to con	vert RE to TM.		[L2][CO6]	[6M]
6	b	Convert the given regul Explain the various type	-		to TM	[L3][CO6] [L2][CO6]	[6M] [12M]
7	a	Discriminate Universal	Turing machi	ne.		[L5][CO6]	[6M]
	b	Construct a TM for regu	Construct a TM for regular Expression 01(00+11)(0+1)*1.				[6M]
8	a	Differentiate PCP and M	entiate PCP and MPCP.				[4M]
	b	Find the PCP solution for	nd the PCP solution for the following sets.			[L5][CO6]	[8M]
			A	В			
			10	101			
			01	100			
			0	10			
		1	.00	0			
			1	010			
9	a	Define PCP. Verify who $\binom{abab}{ababaaa}$,		wing lists have a PCP $\binom{ab}{ab}$, $\binom{ba}{baa}$, $\binom{ab}{ba}$, $\binom{aa}{a}$		[L5][CO6]	[6M]
10	b	Illustrate Linear Bounde Define Mathematical D		Curing Machine. Desc	ribe Recursive	[L2][CO6] [L2][CO6]	[6M] [12M]

and Recursively Enumerable Languages.